Warm-Up

Introduction to the Volume of a Cone

Lesson Question

Lesson Goals Investigate a relationship between cylinder and cone volumes. Determine the formula for the to find the volume of a cone. Use a given height with either the or diameter measure.

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

a segment that extends from the center of a circle to any point on the circle
to explain or show the similarities or differences between items or ideas
the measure of the amount of space occupied by a three-dimensional solid object
a solid object with a circular base and one vertex
a chord that passes through the center of a circle

Warm-Up

Introduction to the Volume of a Cone

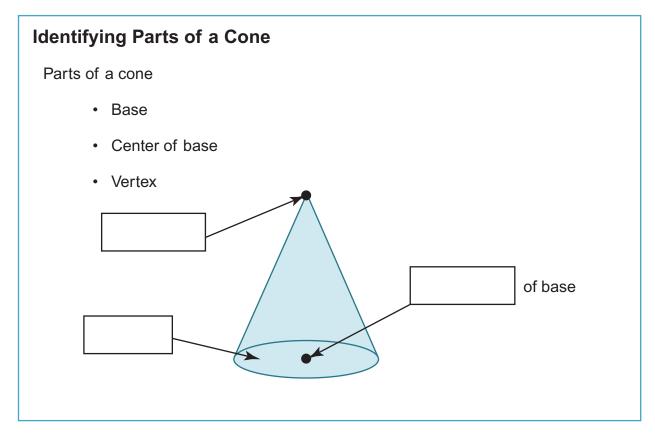
Circular Base Area

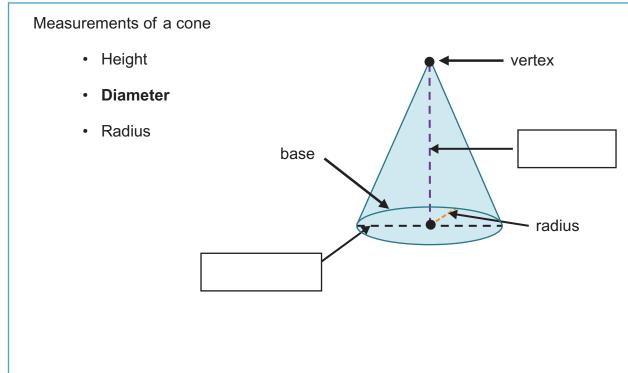
This construction **cone** has a **radius** of 7 inches. What is the area of the base?

$$A =$$

$$A=\pi(7)^2$$

$$A = \pi(7)(7)$$


$$A =$$
 in.²

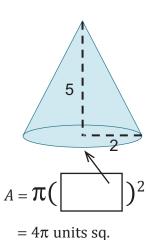


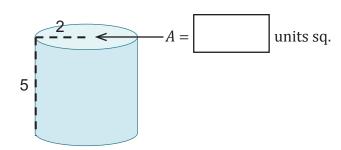
Instruction

Introduction to the Volume of a Cone

Slide

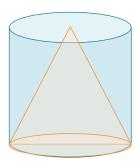
Instruction


Introduction to the Volume of a Cone


Slide

Relating a Cone to a Cylinder

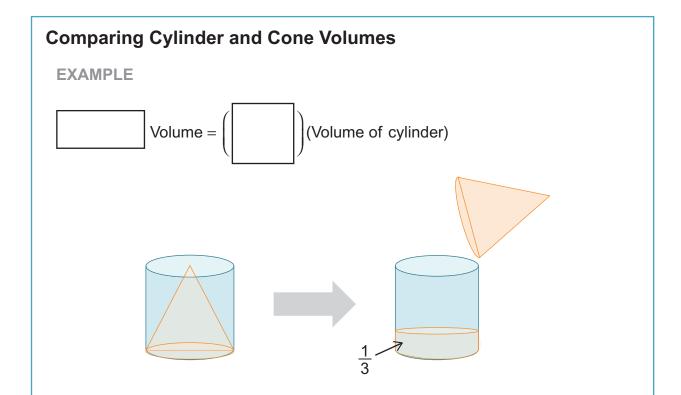
Consider a cone and a cylinder with the same height and radius.



Comparing Cylinder and Cone Volumes

EXAMPLE

Compare the volume of each when a cone and a cylinder have the same base area and height.



The would actually have the greater volume even though they have the same base area and

Instruction

Introduction to the Volume of a Cone

Slide

6

Determining a Formula for the Volume of a Cone

- Volume of a cylinder: V = Bh
 - B is the of the circular base
 - *h* is the height

Volume of a Cone:

$$\frac{1}{3}$$
 (Volume of the cylinder)

$$V = \frac{1}{3}Bh$$

$$V =$$

Instruction

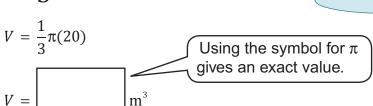
Introduction to the Volume of a Cone

5 m

Slide

8

Calculating the Volume of a Cone


What is the volume of a cone with a radius of 2 meters and a height of 5 meters?

Formula: $V = \frac{1}{3}Bh$

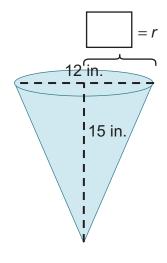
$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi(2^2)$$

$$V=\frac{1}{3}\pi(\boxed{})(5)$$

Instruction

Introduction to the Volume of a Cone


Slide 10

Determining the Volume of a Cone for a Given Diameter

in.3

A cone has a diameter of 12 inches and a height of 15 inches. What is its volume?

•
$$V = \frac{1}{3}Bh$$

 $V = \frac{1}{3}\pi r^2 h$
 $V = \frac{1}{3}\pi (6^2)(15)$
 $V = \frac{1}{3}\pi (15)$
 $V = \frac{15}{3}\pi (36)$
 $V = 5\pi (36)$

Summary

Introduction to the Volume of a Cone

Lesson Question How do you find the volume of a cone?	
--	--

Answer

Use this space to write any questions or thoughts about this lesson.