

Warm-Up Newton's Laws of Motion

Warm-Up Newton's Laws of Motion

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

relate	to show or explain a between two concepts		
inertia	the property of matter that change in motion		
Newton's first law of motion	an object at stays at rest, and an object in stays in motion, unless acted on by an force		
Newton's second law of motion	the total acting on an object is equal to times $(F = ma)$		
Newton's third law of motion	for every, there is an equal and opposite		

Warm-Up Newton's Laws of Motion

Instruction

•	Performed many involving light (optics)
•	works on mathematics, history, and theology
	Dubliched his most significant
•	
	Mathematica, in 1687
N	owton's First Law
N	ewton's First Law
N	ewton's First Law • Newton's of motion states that an object at rest stays at
N	ewton's First Law • Newton's of motion states that an object at rest stays at
N	 ewton's First Law Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an
N	ewton's First Law • Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force.
N	ewton's First Law • Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force.
N	ewton's First Law • Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force. • This is also known as the law of
N	ewton's First Law • Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force. • This is also known as the law of • Inertia is the natural tendency of objects to in
N	ewton's First Law • Newton's of motion states that an object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force. • This is also known as the law of • Inertia is the natural tendency of objects to in

Instruction

Olivia	
3	Newton's First Law
Τ	EXAMPLE
	Let's use this nice and neatly set up table in order to demonstrate the concept
	of What will happen if I were to take the two ends of this
	tablecloth and pull really quickly? Why do these objects not fly off the table
	with the tablecloth?
	The objects have
	object is also a of its inertia. It is also how much
	would be required for the objects to be moved.

Instruction

Slide

6

Instruction Newton's Laws of Motion

Application of Newton's Second Law: Calculate Force

REAL-WORLD CONNECTION

Calculate the force needed to accelerate an object to 4.3 m/s². The object has a mass of 2.2 kg. Round the answer to the nearest tenth.

Given:

•
$$a = 4.3 \text{ m/s}^2$$

•
$$m = 2.2 \text{ kg}$$

Unknown: F

Equation to use: F = ma

Solve:

- $F = (2.2 \text{ kg})(4.3 \text{ m/s}^2)$
- F = 9.46 =

Instruction Newton's Laws of Motion

Application of Newton's Second Law: Calculate Acceleration

REAL-WORLD CONNECTION

Calculate the acceleration of a moving object, given that the object is 500 g and has a force of 6.5 N.

Given:

- m = 500 kg = 0.5 kg
- F = 6.5 N

Unknown: a

Equation to use: a = F/m

Solve:

- a = F/m
- a = (6.5 N)/(0.5 kg)
- a =

Instruction Newton's Laws of Motion

Instruction

Instruction New

Real-World Applications of Newton's Third Law
REAL-WORLD CONNECTION
The action reaction forces:
hands:
 The action and reaction forces are felt independently based on the
point of view of the observer.
Active force:
 The baby feels the pressure of the dad's hand pushing down on its hand.
Reactive forces:
 The dad can feel the baby's hand resist.
• Helium :
Active force:
The gases inside are pushing outward.
Reactive forces:
 The balloon elastic is pushing back on the gases.

Summary

Edgenuity[®]

2 Lesson Questi	n on How do Newton's laws describe the motion of an object?
Answe	۶r

Summary

Law of motion	Description	
law of motion	An object at rest stays at rest, and an object in motion stays in motion, unless acted on by an force.	
Second law of motion	The total acting on an object of times	
Third law of motion	For every, there is an equal and opposite	

Summary

Newton's Laws of Motion

Use this space to write any questions or thoughts about this lesson.